RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. THIRD SEMESTER EXAMINATION, DECEMBER 2017 **SECOND YEAR [BATCH 2016-19]**

MATHEMATICS [General]

Paper: III : 11 am - 2 pm Full Marks: 75 Time

[Use a separate Answer Book for each Group]

Group – A

(Answer any four questions)

 $[4\times5]$

[5]

- Find the projection of the line segment joining the points (3, 3, 5) and (5, 4, 3) on the straight line joining the points (2, -1, 4) and (0, 1, 5). [5]
- A straight line makes angles α , β , γ , δ with four diagonals of a cube. Prove that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta = \frac{4}{3}$. Also prove that $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma + \sin^2 \delta = \frac{8}{3}$. [3+2]
- Determine the signed distance of the point (-2,3,-4) from the plane 3x + 2y 6z + 2 = 0. [5]
- Find the shortest distance between the straight lines $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$ and $\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$. 4. Find also the equation of the line of shortest distance. [3+2]
- 5. Find the point on the sphere $x^2 + y^2 + z^2 2x + 4y 6z 11 = 0$ which is nearest to the plane 3x-4z+19=0 and determine the distance of the point from the plane. [4+1]
- Find the equation of the right circular cone whose vertex is the origin, axis is the z-axis and which passes through the point (3, -4, 6). [5]

Group – B

(Answer any four questions) $[4 \times 10]$

- 7. a) Show that a basic feasible solution to a linear programming problem corresponds to an extreme point of the convex set of feasible solutions. [7]
 - b) If x_1 and x_2 be real, show that $X = \{(x_1, x_2) \mid x_1 \le 5, x_2 \ge 3\}$ is a convex set. [3]
- Reduce the feasible solution $x_1 = 2, x_2 = 1, x_3 = 1$ of the system of equations 8.

$$x_1 + 4x_2 - x_3 = 5$$

: 22/12/2017

Date

$$2x_1 + 3x_2 + x_3 = 8$$

b) Find the dual problem of the following linear programming problem:

Maximize $z = 6x_1 + 5x_2 + 10x_3$

to a basic feasible solution.

subject to $4x_1 + 5x_2 + 7x_3 \le 5$

$$3x_1 + 7x_3 \le 10$$

$$2x_1 + x_2 + 8x_3 = 20$$

$$2x_{2} + 9x_{3} \ge 5$$

 $x_i \ge 0$, j = 1,3 and x_2 is unrestricted in sign. [5]

9. Show that the dual of a dual is primal. [5] a)

b) Show that the feasible solution $x_1 = 1$, $x_2 = 1$, $x_3 = 0$ and $x_4 = 2$ to the system

$$x_1 + x_2 + x_3 = 2$$

$$x_1 + x_2 - 3x_3 = 2$$

$$2x_1 + 4x_2 + 3x_3 - x_4 = 4$$

$$x_1, x_2, x_3, x_4 \ge 0$$

is not basic. [5]

10. a) Solve the following problem by simplex method:

 $Maximize : z = 2x_1 + 3x_2$

Subject to: $x_1 + x_2 \le 8$

$$x_1 + 2x_2 = 5$$

$$2x_1 + x_2 \le 8$$

$$x_1 \ge 0, x_2 \ge 0.$$
 [6]

[2+2]

[3]

[6]

[4]

b) Define extreme point of a convex set. State when an L.P.P. is said to be in the Canonical form.

11. a) Determine an optimal basic feasible solution to the following transportation problem: [7]

	D_1	D_2	D_3	D_4	
O_1	2	3	11	7	6
O_2	1	0	6	1	1
O_3	5	8	15	9	10
	7	5	3	2.	

b) Find an initial basic feasible solution of the following transportation problem by North-West-Corner rule :

	D_1	D_2	D_3	
O_1	2	7	4	5
O_2	3	3	1	8
O_1 O_2 O_3 O_4	5	4	7	7
O_4	1	6	2	14
	7	9	18	

12. a) Find an optimal assignment to find the minimum cost for the assignment problem with the following cost matrix.

	I	II	III	IV	V
A	6	5	8	11	16
В	1	13	16	1	10
C	16	11	8	8	8
D	9	14	12	10	16
E	10	13	11	8	16

b) Solve the L.P.P graphically

Minimize $z = 3x_1 + x_2$

Subject to: $2x_1 + 3x_2 \le 6$

$$\mathbf{x}_1 + \mathbf{x}_2 \ge 1$$

$$x_1 \ge 0$$
 and $x_2 \ge 0$

13. a) Solve the following L.P.P by Simplex method:

Maximize
$$z = 60x_1 + 50x_2$$

subject to : $x_1 + 2x_2 \le 40$

$$3x_1 + 2x_2 \le 60$$

and
$$x_1, x_2 \ge 0$$
 [6]

b) Find the extreme points of the convex set of the feasible solutions of the following L.P.P.:

Minimize
$$z = 2x_1 + 3x_2 + 4x_3 + 5x_4$$

subject to $2x_1 + 3x_2 + 5x_3 + 6x_4 = 16$
 $x_1 + 2x_2 + 2x_3 + 3x_4 = 9$

$$x_1, x_2, x_3, x_4 \ge 0$$
 [4]

Group - C

(Answer <u>any three</u> questions) [3×5]

14. Define the terms "absolute error", "relative error" and "percentage error" as used in numerical analysis. The number $\frac{1}{3}$ is approximated as 0·33. Find the absolute and percentage error in this approximation. [3+2]

15. Calculate f(21) from the following table

X	0	5	10	15	20
f(x)	1.0	1.6	3.8	8.2	15.4

Correct upto two decimal places.

[5]

[5]

16. Find the value of f(2.5) by suitable interpolation formula from the following table (correct upto 3 significant figures):

[5]

X	2	3	4	5
f(x)	14.5	16.3	17.5	18.0

- 17. Find the location of the positive roots of $x^3 9x + 1 = 0$ and evaluate the smallest one by bisection method, correct upto 2 decimal places.
- 18. Evaluate $\int_0^1 \frac{x}{1+x} dx$ correct upto 2 significant figures, taking six equal sub-intervals by Simpson's one-third rule. Compute the exact value of integral (correct upto 2 significant figures) and find the absolute error. [4+1]

____×___